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Abstract 
Context  As land-use change and climate change 
transform landscapes globally, increases in habi-
tat fragmentation and shifts in habitat composition 
present challenges for the conservation of wildlife. 
Behavioral approaches to landscape ecology can 
explore how animal movement across complex land-
scapes can drive ecological processes like functional 
connectivity. By integrating mechanisms that link 
landscape change to animal behavior, simulation 

models can project how individuals and populations 
will respond to novel landscapes.
Objectives  To understand how dispersal behavior 
and functional connectivity between populations of 
American martens respond to changes to the land-
scape due to land-use and climate. We also seek to 
demonstrate the explanatory power of integrating 
mechanistic models of landscape transformation and 
animal dispersal.
Methods  We present a novel investigation of behav-
ioral responses to land-use and climate change by 
linking a landscape-level simulation of forest succes-
sion (LANDIS-II) with an individual-based model of 
animal behavior (SEARCH).
Results  Climate change caused an increase in suit-
able cover types for martens, but forest diversity is 
likely to decline. Both land-use and climate change 
impacted dispersal behavior of martens and func-
tional connectivity between populations. These 
effects were not consistent across simulations, as 
dispersal behavior and success were affected by the 
direction of dispersal (i.e., source population) due to 
asymmetry in landscape configuration and its interac-
tion with climate and land-use change.
Conclusions  This study demonstrates how the 
integration of behavioral and landscape models can 
inform conservation in ways that classical modeling 
cannot and how the use of mechanistic simulation 
models can produce robust projections about spe-
cies responses to novel conservation challenges in an 
uncertain future.
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Introduction

Dispersal capacity is integral to the ability of wild-
life species to respond to changes in habitat suitabil-
ity induced by climate change (Pauchard et al. 2016), 
yet land-use change might impede dispersal and limit 
species’ ability to cope with climate change (Opdam 
and Wascher 2004; Tucker et  al. 2018). Dispersal is 
also required for populations to maintain connectiv-
ity, which is necessary for long-term genetic diversity 
(Allendorf 1986) and the spread of climate-adaptive 
alleles (Senner et al. 2018). Connectivity may also be 
affected by indirect effects of climate change, such as 
changes in habitat composition or prey availability. 
To conserve rare or threatened species, conservation 
planners account for the effects of land-use change 
and climate change on animal dispersal not only as a 
means to keep pace with climate, but to maintain con-
nectivity among populations and with climate refugia 
(Nuñez et al. 2013).

Landscape-scale models of changes to the com-
position and configuration of habitats have been 
widely developed to improve understanding of 
potential impacts from climate change and land-use 
change. Approaches are various and include projec-
tions of land-use transformation (Tayyebi et al. 2013; 
Sohl et al. 2014), range shifts in response to climate 
change (Hargrove et al. 2014; Peters et al. 2020; Pot-
ter et  al. 2010), process-based simulations of forest 
succession (Scheller and Mladenoff 2008; Zollner 
et al. 2008; Thompson et al. 2011; White et al. 2022), 
and climate envelopes (Hijmans and Graham 2006; 
McCain and Colwell 2011; Fernandes et  al. 2020). 
Many of these modeling approaches include effects 
of climate change and/or land-use change on biotic 
communities from food webs to habitat relationships. 
However, when considering responses of wildlife to 
such changes as those to climate and land-use, land-
scape-scale models tend to omit the role of animal 
behavior and behavioral plasticity as mechanisms 
that drive eco-evolutionary processes like popula-
tion connectivity and adaptation (Muñoz et al. 2015; 
Hermes et al. 2018; Bocedi et al. 2021). The ability 
to simulate these processes is needed, as landscape 

transformation affects the dispersal capabilities of 
wildlife population’s worldwide (Tucker et al. 2018).

The interaction of climate change and land-use 
change will also affect animal movement and land-
scape connectivity in places other than at the mar-
gins of a species range (Hannah 2011). Potential 
impacts on behavior such as those driven by changes 
in landscape composition should not be overlooked 
when assessing threats to the conservation of rare or 
threatened species. While behavioral plasticity has 
been widely documented as a mechanism for spe-
cies to cope with environmental change, (Berger‐Tal 
et  al. 2016) the majority of reported examples have 
been observational (reviewed in Beever et  al. 2017) 
and predicting behavioral responses to environmental 
change remains a challenge (Muñoz et al. 2015). One 
solution is to identify the mechanisms that allow for 
behavioral plasticity (Snell-Rood 2013; Beever et al. 
2017), and then incorporate those mechanisms (e.g., 
changes to phenology, microhabitat use, foraging 
habits) into behaviorally explicit simulation models 
to reproduce or predict behavioral responses to spe-
cific environmental changes (Bocedi et al. 2014; San-
tini et al. 2016; Schumaker and Brookes 2018). Such 
models have mostly been applied to answer questions 
about shifts in species distributions (Brooker et  al. 
2007; Synes et  al. 2015; Santini et  al. 2016) rather 
than connectivity.

We combined a landscape-level simulation model 
of forest succession (LANDIS; Scheller et  al. 2007) 
with an individual-based model of animal disper-
sal (SEARCH; Pauli et al. 2013a, b) to evaluate how 
land-use change and climate change would affect the 
dispersal and functional landscape connectivity of 
endangered populations of American martens (Mar-
tes americana; hereafter martens). We define func-
tional connectivity in terms of the degree to which 
the landscape facilitates or impedes movement, with 
consideration for travel costs such as energy use and 
mortality risk (Belisle 2005). In our study system 
(Upper Michigan and Wisconsin USA), martens have 
been repeatedly reintroduced since the 1950s, yet 
martens remain endangered in Wisconsin (Williams 
et  al. 2007). Functional connectivity and population 
isolation may play a key role in this slow recovery, 
as immigration, recruitment, and assortative mat-
ing may all contribute to a lack of population growth 
(Howell et al. 2016; Grauer et al. 2017; Manlick et al. 
2017a; Day et  al. 2022). These factors may also be 
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interacting with other factors such as inter-specific 
competition and lack of food availability to limit pop-
ulation connectivity in the region (Carlson et al. 2014; 
Manlick et  al. 2017b; Day et  al. 2021). If marten 
populations in Wisconsin are to persist, understand-
ing how they are likely to respond to land-use change 
and climate change will be necessary to plan for their 
conservation. Empirically driven, mechanistic simu-
lation modeling can contribute to the study of such 
questions because it provides a virtual environment 
in which to simulate future conditions, test alternative 
future landscapes, and investigate the consequences 
of uncertainty in future landscape conditions.

Our goal was to evaluate the behavioral response 
of martens to landscape transformation as a result of 
land-use and climate change using a combination of 
mechanistic simulation modeling approaches. Spe-
cifically, we used LANDIS-II (hereafter LANDIS) to 
simulate forest succession dynamics to project land-
scape characteristics that are relevant to marten ecol-
ogy under alternative carbon emissions scenarios. 
We then used outputs from LANDIS as inputs to an 
individual-based model (SEARCH) to simulate dis-
persal and home-range establishment of martens 
under each scenario. Our specific objectives were to 
use these simulation models to evaluate (1) the effects 
of climate change on forest composition and habitat 
suitability and (2) the effects of climate change and 
land-use change on marten dispersal and functional 
landscape connectivity.

Methods

Study system

The study was conducted in territory ceded by 
the Ojibwe tribes in the treaty of 1842 in northern 
Wisconsin and the Upper Peninsula of Michigan, 
USA (Fig.  1). The area is mostly forested but also 
includes two towns with a population greater than 
1,000. Forests in the region are a sub-boreal mix-
ture of deciduous and conifer species. The study 
area is primarily deciduous forest (53.0% of for-
ested area) interspersed with conifer (7.3%) and 
mixed (15.7%) stands and is dominated by quaking 
aspen (Populus tremuloides) and the northern hard-
wood community (e.g., sugar maple (Acer saccha-
rum), red maple (A. rubrum), yellow birch (Betula 

alleghaniensis)), although conifers are found in 
many stands. Roughly one third of the landscape 
is wetland, most of which is forested with lowland 
coniferous or lowland hardwood species. Timber 
harvest is economically important in the region 
(Iron County 2006), and the landscape is a mosaic 
of ownerships, including three county forests, one 
state forest, two national forests, tribal forest, and 
private industrial and non-industrial forests (Fig. 1).

Martens in the study area require complex forests 
with vertical structure (Dumyahn et  al. 2007; Gil-
bert et  al. 2017). To parameterize habitat suitabil-
ity inputs for our simulation model, we followed the 
home-range level habitat selection model of Wright 
(1999) and Dumyahn et  al. (2007) that reported 
martens selecting for northern hardwoods and saw-
log aspen, while selecting against lowland conifers, 
sapling lowland hardwoods, sapling/pole aspen, 
and non-forested cover types. All other cover types 
were considered neutral (i.e., neither selected nor 
avoided). A typical home-range in the study area 
was composed of at least 70% non-avoided (i.e., 
either neutral or selected for) habitat types. We note 
here that this model of habitat selection was devel-
oped in the context of present habitat and not with 
a focus on how this habitat might be affected by 
future climate change or land-use change.

The goal of the simulations is to evaluate the 
functional connectivity of a forested corridor that 
separates reintroduced populations of martens 
that occupy the east and west end of the corridor, 
respectively. On the east side of the corridor, the 
Michigan population has grown large enough to 
sustain an annual marten trapping season while the 
Wisconsin population in the west remains state-
endangered. The forested habitat in between the 
two populations is Iron County, WI, which provides 
the best opportunity for connecting the two popula-
tions along the Penokee mountain range. Within the 
corridor, an asymmetry in landscape configuration 
exists from west to east, with the western portion 
being more forested and containing more contigu-
ous suitable habitat than the eastern portion, which 
is more fragmented by lakes, wetlands, and devel-
opments associated with private lands (Day et  al. 
2020). Our simulations evaluate functional connec-
tivity across this corridor under alternative scenar-
ios of land-use change and climate change.
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Study design

This study was carried out in two steps: simulation 
of forest succession under alternative scenarios of 
carbon emissions using LANDIS, and simulation of 
marten dispersal and home-range establishment using 
the SEARCH modeling framework, informed by out-
puts of forest composition from the LANDIS simula-
tions and projections of land use change (Sohl et al. 
2014). See Fig. 2 for a conceptual framework of the 
simulation study design.

First, we evaluated forest response to three alter-
native scenarios of carbon emissions: historical, 

moderate, and high. To evaluate landscape response 
to these scenarios, we selected five response variables 
that were both representative of the effects of cli-
mate change on forested habitat and forest diversity, 
and relevant to marten habitat for both dispersal and 
home-range establishment. These response variables 
included (1) total forested biomass, (2) total num-
ber of species-age cohorts, (3) species richness per 
forested cell, (4) age richness per forested cell, and 
(5) proportion of cover types considered to be non-
avoided by martens. Resulting landscapes were con-
verted into habitat suitability maps for the dispersal 
simulations within SEARCH.

Fig. 1   Patterns of ownership and landcover type within the 
spatial extent of a simulation study of forest succession and 
American marten dispersal behavior under alternative climate 
and land-use change scenarios in the Upper Midwest, USA. 

The red polygon indicates the forested corridor between the 
regions where martens were historically introduced from the 
1950s to the 2010s in adjacent national forests (Williams et al. 
2007)
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For animal dispersal modeling, we implemented a 
factorial simulation experiment across three factors: 
(1) carbon emissions (historical, moderate, high) as 
implemented in LANDIS, (2) land use change (pre-
sent/absent), and (3) source population (east/west). 

We replicated each of the 12 unique combinations 
of factors within SEARCH (i.e., model scenarios) 
10 times, for a total of 120 simulation runs. Outputs 
from 10 LANDIS runs per carbon emissions scenario 
were used to provide unique landscape inputs for each 

Fig. 2   Flowchart of the overall study design of the integra-
tion of a model of forest succession (LANDIS) and a model 
of American marten dispersal (SEARCH) in northeastern 
Wisconsin, USA. LANDIS outputs were used as inputs for the 

SEARCH modeling. Each simulation was run with 10 repli-
cates across all factorial combinations of experimental factors 
for a total of 30 LANDIS simulations and 120 SEARCH simu-
lations
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of the 10 SEARCH replicates. For each combina-
tion of model scenario and replicate, we simulated 5 
generations of dispersers, with each generation pro-
ducing 10 new dispersers for a total of 50 dispersal 
events per replicate (6000 dispersal events total). For 
the source population factor, we simulated dispers-
ing animals originating from the Michigan population 
(east) or from the Wisconsin population (west). This 
allowed us to evaluate the effects of directional asym-
metry in dispersal due to landscape configuration on 
landscape connectivity (Day et  al. 2020), as well as 
any interactive effects between source population and 
other experimental factors. We evaluated each fac-
tor’s effect on functional connectivity between the 
two populations, as well as effects on local disper-
sal metrics including dispersal distance, time to set-
tlement, and probability of successful home-range 
establishment.

We conducted SEARCH simulations on all three 
carbon emissions scenarios: historical, moderate 
(Representative Concentration Pathway (RCP) 4.5), 
and high (RCP 8.5 (IPCC 2013)). We converted the 
LANDIS species-age cohort output at year 100 to 
cover types and size classes that matched those of 
a local model of marten habitat suitability (Wright 
1999; Dumyahn et al. 2007) using the reclass exten-
sion in LANDIS (Scheller and Mladenoff 2004). 
This allowed us, for example, to spatially delineate 

the simulated landscapes in terms of marten habi-
tat selection (i.e., selected, avoided, or non-avoided) 
or food availability. In this way, we used the results 
from LANDIS describing cover type and tree size to 
generate spatial input layers for the SEARCH model 
(described below).

For the land-use change treatment (Fig.  3), we 
produced two complete sets of inputs for each car-
bon emission scenario to be implemented in the 
SEARCH model. One set was based on a temporally 
static landscape (i.e., no land-use change over time), 
and another set incorporated land-use change for 
the region projected out to the year 2100 (Sohl et al. 
2014; Fig.  3). The primary changes in land-use that 
affected the SEARCH maps included forested habi-
tat converted to pasture, agriculture, or urban areas. 
Below, we provide details for parameterization and 
development of the LANDIS simulations, followed 
by the SEARCH simulations.

Simulating landscape dynamics

We used the LANDIS (v 6.2; Scheller et  al. 2007) 
forest landscape model to simulate 100 years (2006 
– 2106) of forest succession and disturbance in the 
study area. LANDIS is a raster-based, spatially 
explicit modeling framework that simulates processes 
of forest succession (growth, mortality, regeneration, 

Fig. 3   Land-use change 
projections from the United 
States Geological Survey 
(Sohl et al. 2014) com-
paring land-use between 
the years 2006 and 2100. 
Yellow polygons indicate 
non-forested areas in 2006, 
and red polygons indi-
cate projections of forest 
conversion to urban areas, 
agriculture, and pasture by 
the year 2100
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seed dispersal, and establishment of species-age 
cohorts) and disturbance. LANDIS has been widely 
used to simulate forest succession in the Upper Mid-
west (Scheller et  al. 2011; Gustafson and Sturtevant 
2013; Gustafson et al. 2023) under alternative scenar-
ios of climate change and disturbance (Xu et al. 2007; 
Duveneck et al. 2014), as well as to predict patterns 
of wildlife habitat (Radeloff et al. 2006; Zollner et al. 
2008). In LANDIS, each cell on the landscape con-
tains an assemblage of species-age cohorts that com-
pete and interact with surrounding cells (seed disper-
sal and contagious disturbances) to produce dynamics 
of forest succession that are output as a time series of 
forest attribute maps that can be used to predict mar-
ten habitat suitability. The physiographic features of 
the landscape are represented as ecoregions deline-
ated by soils and landform.

To define the extent of the LANDIS simulations, 
we followed the methodology from Day et al. (2020), 
buffering known marten locations from the study 
area by 14 km, equal to the mean dispersal distance 
of martens translocated to the study area in 2010. We 
further buffered the resulting extent by an additional 
5 km, a distance equal to the maximum seed dispersal 
distance of tree species simulated in LANDIS. This 
resulted in a 53.5 by 82.9 km raster (4439 sq km), 
divided into 90 × 90 m cells. Using a 10-year time 
step, we used the PnET-Biomass Succession Exten-
sion (v2.0; de Bruijn et al. 2014) to simulate succes-
sion and the Biomass Harvest Extension (v3.2; Gus-
tafson et al. 2000) and Linear Wind Extension (v1.0; 
Gustafson et al. 2015) to simulate the primary distur-
bances structuring the landscape. We used PnET-Suc-
cession because its mechanistic use of first principles 
to simulate the competition of cohorts for light and 
water is well-suited to model novel situations such 
as climate change and associated increases in atmos-
pheric CO2 (Gustafson 2013). Soil water availability 
is determined by precipitation inputs, loss to evapo-
ration and runoff, soil porosity, and consumption by 
species cohorts. Access to light depends on canopy 
position, leaf area and shade tolerance. Each spe-
cies responds to temperature as a function of depar-
ture from optimal temperature for photosynthesis, 
coupled with temperature effects on vapor pressure 
deficit, respiration and evapotranspiration rates. Thus, 
in PnET-Succession, growth rates vary monthly by 
species and cohort as a function of precipitation and 
temperature, which directly affects competition and 

ultimately successional outcomes. A more detailed 
description of the model can be found in De Bruijn 
et al (2014).

Initial communities—To create a base map of ini-
tial forest cover we used publicly available land cover 
data sets (WDNR 2016; MDNR 2001) in combination 
with the Landscape Builder software (Dijak 2013) 
and Forest Inventory Analysis Database (FIA; Miles 
et al. 2001). We selected 19 tree species (Table 1) for 
simulation (Scheller and Mladenoff 2005; Dumyahn 
et al. 2007) and produced a set of species-age cohorts 
for each included FIA plot. These communities were 
then randomly assigned to matching cover types 
across the landscape (Table 2), and this process was 
repeated 10 times to produce 10 landscape replicates. 
For more information on how initial communities 
were created, see Appendix S1.

Physiographic regions—We defined ecoregions 
in the study area based on soil type, soil depth, and 
slope using data available from the Soil Survey Geo-
graphic Database (SSURGO; Soil Survey Staff 2017) 
available from the USGS Geo Data Portal (https://​
cida.​usgs.​gov/​gdp/). We assigned a unique ecore-
gion type to each combination of soil type, depth, and 
slope, for a total of 38 ecoregions. For more detail on 
how these physiographic regions were developed, see 
Appendix S1.

Carbon emissions and climate—We derived future 
climate scenarios (minimum and maximum tempera-
ture and precipitation) from a single Global Climate 
Model (GCM, GFDL-ESM2G; Delworth et al. 2006) 
using two Representative Concentration Pathways 
(RCP 4.5, 8.5) from the Intergovernmental Panel 
on Climate Change Fifth Assessment Report (IPCC 
2013). We also incorporated monthly solar irradia-
tion (Kittel et  al. 2000) and atmospheric CO2 con-
centrations (Meinhausen et  al. 2011). We simulated 
a historical climate and carbon emissions scenario 
based on 50 years of monthly weather data from 1950 
through 1999 (Daly and Gibson 2002) and annual 
values of atmospheric CO2 (Institute for Atmospheric 
and Climate Science, http://​www.​iac.​ethz.​ch). For 
additional detail, see Appendix S1.

Disturbance—To simulate timber harvest on the 
landscape, we obtained copies of forest management 
plans from six management agencies representing 
each county, state, and national forest within the 
study area. We then developed harvest prescriptions 
for each of the six management agencies, and target 

https://cida.usgs.gov/gdp/
https://cida.usgs.gov/gdp/
http://www.iac.ethz.ch
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cutting acreages for each prescription based on past 
and projected timber harvest activity (Table  3). 
Spatial boundaries of forest stands were delineated 
based on spatial stand inventory data provided by 

each management agency. Stand boundaries were 
not available for private and commercial forests, 
so we delineated an arbitrary grid of 9 ha stands 
on those lands. Based on the USDA Forest Service 

Table 1   Key species parameters included in the LANDIS-II simulation model of forest succession in the Upper Midwest, USA 
under alternative climate scenarios

LMA Leaf Mass Area, HalfSat regulates shade tolerance and indicates half saturation intensity of radiation for photosynthesis (De 
Bruijn 2014)

Species Foliar 
nitrogen 
(%)

Maximum 
LMA (gm−2)

Annual foli-
age turnover

Longevity 
age (years)

Age at matu-
rity (years)

HalfSat 
(µmol/ m2/
sec)

Effective seed 
dispersal (m)

Abies balsamea 0.9 225 0.25 150 25 105 30
Acer rubrum 2.2 60 1 200 10 111 100
Acer saccharum 2.1 47 1 300 40 105 100
Betula alleghaniensis 2.2 50 1 300 40 105 100
Betula papyrifera 2.4 75 1 130 20 100 200
Fraxinus americana 2.5 60 1 200 30 111 70
Fraxinus nigra 2.6 65 1 150 20 100 100
Larix laricina 2.7 60 1 180 35 105 50
Picea glauca 1.1 225 0.25 200 25 111 30
Picea mariana 1 200 0.25 200 30 111 80
Pinus banksiana 1.3 245 0.3333 100 10 118 30
Pinus resinosa 1.5 230 0.3333 250 25 118 12
Pinus strobus 1.8 220 0.5 300 40 111 30
Populus tremuloides 2.5 85 1 90 15 100 500
Prunus serotina 2.5 70 1 150 30 111 30
Quercus rubrum 2.6 60 1 200 25 111 30
Thuja occidentalis 1 130 0.5 400 30 111 45
Tilia americana 2.5 50 1 200 30 111 30
Tsuga canadensis 1.4 105 0.3333 450 30 105 30

Table 2   Species groupings and corresponding model of habitat selection by American martens, reproduced from Wright (1999) and 
Dumyahn et al. (2007)

Species groupings were used to impute initial communities for LANDIS-II modeling and parameterize SEARCH input layers based 
on LANDIS-II output. Values for habitat selection* indicate how martens select home-ranges based on the size class of the corre-
sponding cover type (sapling, pole, saw log)
* Dashes indicate where none of the three size classes fall under the corresponding selection category

Cover type Species Selected Avoided Neutral

Aspen Betula papyrifera, Populus tremuloides, Saw Sapling/Pole –
Oak Quercus rubrum – – All
Lowland hardwood Acer rubrum, Fraxinus nigra Saw/pole Sapling –
Upland hardwood Acer saccharum, Betula alleghaniensis, Fraxinus ameri-

cana, Prunus serotina, Tilia americana
All – –

Lowland conifer Larix laricina, Picea mariana, Thuja occidentalis – All –
Upland conifer Abies balsamea, Picea glauca, Tsuga canadensis – – All
Pine Pinus banksiana, Pinus resinosa, Pinus strobus – – All
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Woodland Owner Survey (Brett Butler, unpublished 
data), we assumed that 40% of the private industrial 
and private non-industrial forests are not currently 
under active timber management, and randomly 
assigned 40% of private stands as unmanaged (no 
timber harvest allowed). We developed harvest pre-
scriptions for the remaining 60% of private forests 
that were comparable to those for county forests. 
For each prescription on each ownership in each 
10-year time step, the Harvest extension ascer-
tained the eligibility of each stand according to age 
and composition criteria, and eligible stands were 
cut in order of decreasing stand age (age of oldest 
cohort) until the target acreage for the forest type 
and time step was reached or until no eligible stands 
remained.

For wind disturbance, we used the linear wind 
extension (Gustafson et  al. 2015) which simulates 
cohort mortality due to blowdown as a result of 
wind events that produce a linear pattern, such as 
tornadoes and derechos. Frequency, intensity, and 
directionality of wind events are user-defined, and 
the severity of cohort mortality is dependent on the 
age of the affected cohorts (older cohorts experience 
greater severity). Wind intensity is greatest along 
the primary axis of the wind event, and declines 
with distance from the axis. We parameterized this 
extension based on multiple sources that reported 
on the frequency and intensity of wind events in the 
region (Johnson and Miyanishi 2010; Peterson et al. 
2016; Corfidi et al. 2017; NOAA 2017).

Animal dispersal model

American martens are solitary, territorial carnivores 
that display sexually dimorphic patterns of juvenile 
dispersal and average home range size (males = 4.3 
km2, females = 2.3 km2) within the study area 
(Dumyahn et  al. 2007). To simulate marten disper-
sal across the Iron County habitat corridor, we built 
upon previous applications of the SEARCH modeling 
framework (Spatially Explicit Animal Response to 
Composition of Habitat) implemented for the same 
region and species (Day et  al. 2019, 2020). Disper-
sal behavior in the original model was calibrated 
using pattern-oriented modeling to match dispersal 
patterns of actual martens from translocations on the 
CNNF in 2010 (Woodford et al. 2013). These patterns 
included, for example, dispersal distance mean (13.9 
km) and standard deviation (13.2 km), mean days to 
home-range establishment (37.3 days), and disperser 
mortality rate (0.17). Following, we describe the gen-
eral processes and key parameters of our SEARCH 
application. For a full ODD description (Overview, 
Design, and Details) of the SEARCH framework, see 
Pauli et al. (2013a).

In SEARCH modeling, the primary processes 
center around the dispersal of individuals in search of 
a location that is both suitable for home-range estab-
lishment and is unoccupied by an individual of the 
same sex. To initialize our SEARCH runs, we first 
simulated the establishment of marten home-ranges 
on the study area for each combination of landscape 

Table 3   Harvest regime implemented in LANDIS-II modeling of forest succession in the Upper Midwest, USA under alternative 
climate scenarios

Numerical values indicate the percentage of forest for each ownership cut per decade under each prescription. Values of N\A indicate 
either that no management plan was in place for a given cover type or the complete absence of that cover type from the ownership
ALSF American Legion State Forest, CNNF Chequamegon Nicolet National Forest, ONF Ottawa National Forest

Forest type Prescription Ashland County Iron County Gogebic County ALSF CNNF ONF Private

Upland hardwoods Uneven aged 9 5.5 9.5 3.5 9 9.5 10.5
Lowland hardwoods Shelterwood 0.55 0.12 0.55 N\A N\A N\A N\A
Aspen Clearcut 1.5 1.25 0.5 1.7 1.65 1.2 0.5
Oak Shelterwood N\A 0.02 N\A N\A N\A N\A N\A
Red/white pine Select N\A N\A N\A 1.6 N\A N\A N\A
Red/white pine Clearcut 0.025 0.05 0.01 0.32 0.05 0.75 0.6
Conifer Clearcut 1.4 1.2 0.16 0.05 0.33 0.25 2.35
Forested
area (ha)

14,570 57,850 11,031 14,701 12,638 12,158 102,803
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replicate (10 per carbon emissions scenario output by 
LANDIS), carbon emissions scenario, and land-use 
scenario to generate a map of existing resident home-
ranges (Day et  al. 2019). To do this, we simulated 
the release of virtual martens reflecting the estimated 
marten density in the region. These individuals were 
released at random locations across suitable habitat 
polygons and were allowed to establish a home-range 
immediately. The resulting maps of resident home-
ranges were used as the initial marten occupancy map 
for each combination of experimental factors simu-
lated by SEARCH (Fig. 2).

SEARCH simulates the fine-scale animal dispersal 
and home-range establishment or mortality of indi-
vidual animals across spatially explicit landscapes. 
During dispersal in SEARCH, martens made deci-
sions at 15-min time steps, responding to their loca-
tion within four independent, vector-based maps that 
defined habitat suitability and availability, movement, 
food availability, and predation risk (See Figure  S1 
for an example of each map type). For each combina-
tion of landscape scenario and replicate, we created a 
unique set of these four maps derived from the LAN-
DIS output. Generation of the spatial configuration 
of these maps was based on landscape characteris-
tics associated with cover type and tree size classes 
derived from cohort age and biomass in LANDIS 
(Day et  al. 2019, 2020). For the habitat suitability 
map, we converted LANDIS output to a binary layer 
of avoided and non-avoided cover types (Table  2). 
We then used focal statistics in ArcGIS (ESRI, Red-
lands, CA) to determine which cells were considered 
suitable (i.e., the surrounding 1 sq km was composed 
of ≥ 70% non-avoided cover types). While 70% is 
considered the baseline rule for marten habitat selec-
tion, our application also included a dynamic habitat 
suitability map that implemented a decline in habitat 
selectivity by dispersers over time (Ward 1987). This 
mechanism allowed individuals to settle for progres-
sively lower habitat quality when population density 
was high or to mitigate potential failure to locate and 
establish a home-range (Day et al. 2019).

Map layers defining disperser movement behav-
ior, food availability, and predation risk all varied by 
cover type and followed previous applications of the 
marten SEARCH model (Day et al. 2019, 2020). The 
movement map was generated with values derived 
from a snow-trailing study near the simulation extent 
(McCann et  al. 2014), including sex-specific values 

for distance moved per time step, mean turning angle 
per time step, and probability of crossing between 
cover types. Perceptual distance, or the radius of the 
area that an individual was able to perceive the suit-
ability of surrounding habitat, was 100 m for all cover 
types (Gardner and Gustafson 2004). Food availabil-
ity, or species-specific probabilities of prey capture 
per time step, were derived from the snow-trailing 
study (McCann et  al. 2014). Successful prey cap-
ture provided energy reserves for dispersing martens 
(Gilbert et  al. 2009), and failure to maintain energy 
reserves resulted in starvation. Predation risk simi-
larly varied by cover type, and probability of mortal-
ity per time step was derived from a study of mortal-
ity of dispersing martens (Davis 1983) combined with 
relative abundance of predators (i.e., fishers [Pekania 
pennanti] and owls; McCann et al. 2014, PAZ unpub-
lished data).

Disperser movement while searching for suitable 
home-range locations was simulated by a correlated 
random walk at 15-min time steps. Based on previous 
simulations calibrating SEARCH behavior to empiri-
cal data (Day et  al. 2019), simulated martens were 
required to undergo a two-week exploration phase 
prior to being allowed to establish a home-range. 
As dispersing martens moved through the simulated 
landscape, they maintained a memory map of habi-
tat suitability for the areas they visited. The extent 
of the memory map was a function of perceptual 
range, or the distance from an individual’s location 
at which they are capable of perceiving suitable habi-
tat. As potentially suitable home-range locations were 
encountered, dispersers added them to a list of poten-
tially suitable home-range locations in their memory. 
If sufficient suitable habitat was observed following 
the 2–week exploration phase, martens switched out 
of search mode and began orienting toward a specific 
potential home-range location. At this point, the list 
of potential home-range sites was ranked and sorted 
based on proximity, food availability, and predation 
risk, and the martens oriented toward the top-ranked 
site and attempted to establish a home-range. If avail-
able suitable habitat was insufficient for home-range 
establishment, the marten either reoriented toward the 
next site on the list, or (if no more sites were stored 
in memory) returned to searching for new suitable 
home-range locations. This pattern of searching for a 
suitable home-range continued until either settlement 
was achieved or 60 days passed, at which point the 
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individual suffered mortality. Successful dispersers 
produced a single offspring that then dispersed the 
following year, repeating the cycle of dispersal for up 
to five generations per combination of LANDIS repli-
cate and landscape scenario.

Data analysis

Forest composition—To evaluate landscape response to 
the alternative scenarios of carbon emissions (LANDIS 
output), we conducted analysis of variance for each of 
the five response variables (total forested biomass, total 
number of species-age cohorts, species richness per for-
ested cell, age richness per forested cell, and proportion 
of cover types considered to be non-avoided by mar-
tens). We produced plots of each of these response vari-
ables to provide a visual representation of trends over 
time for each carbon emissions scenario.

Local dispersal—To evaluate marten behavio-
ral responses to the carbon emissions and land-use 
change treatments (SEARCH output), we measured 
three variables associated with marten dispersal in 
the simulations. These three response variables—
straight-line dispersal distance, time from release 
until home-range establishment, and proportion of 
dispersers that were successful (i.e., survived and 
established a home-range)—were local dispersal met-
rics that were not considered indicative of functional 
connectivity per se, but provide information about 
how factors affecting all dispersal behavior differ 
from those affecting behavior that are indicative of 
functional connectivity (Day et al. 2020).

To evaluate the role of the experimental factors on 
these local dispersal outcomes, we developed a set of 
general linear models (GLMs), evaluated using Akai-
ke’s Information Criterion (AIC) in an information the-
oretic approach (Akaike 1974; Burnham and Ander-
son 2002). We first developed a full suite of additive 
models for each response variable and identified the 
best model using AIC. If the top-performing model 
included multiple factors, we developed a new GLM 
to test for interactions among variables and compared 
the resulting AIC value to the best additive model. Fol-
lowing model selection, we used analysis of variance 
to determine if the variables in each of the top models 
had a significant effect on the response variable.

Functional connectivity—We compared func-
tional connectivity across landscape scenarios based 

on outputs of the simulated dispersal behavior of the 
individuals in the SEARCH model using machine 
learning analyses. To measure functional connec-
tivity, we developed a metric to evaluate landscape 
effects following the method from Day et al. (2020). 
This metric was a measure of net directional dis-
placement of an individual from the original release 
site, expressed as a fraction of the distance traversed 
between the two population origins. For example, 
if an individual originating in the east established a 
home-range in the western release area, the landscape 
received a connectivity value of 1. An individual that 
settled halfway between the two release sites would 
contribute a connectivity value of 0.5. This metric 
assumes that greater movement between populations 
in the controlled simulation environment is an indi-
cator of functional connectivity of the landscape, 
accounting for both the structural elements of the 
landscape and the travel costs incurred by the land-
scape (Belisle 2005; Day et al. 2020).

Because long-distance dispersal events are often 
critical to maintaining connectivity between popula-
tions, we followed Day et  al. (2020) and examined 
four percentile subsets of the functional connectivity 
metric based on those individuals that had traveled 
furthest in the direction of the population opposite 
their source population. These included all individuals 
above the 0th (all data included), 75th, 90th, and 95th 
percentiles. The larger the percentile, the further that 
individuals included in the analysis traveled across 
the landscape between populations. In this way, we 
evaluated the relative influence of each experimental 
factor on the subsets of individuals that contributed 
most to population connectivity while omitting those 
with strong site fidelity. To describe the relationship 
between each factor and the connectivity metric, we 
used the “rpart” package in Program R to conduct 
ordinary regression tree analyses (R Core Team 2017; 
Therneau et  al. 2017). Pruning of regression trees 
was conducted by limiting the number of splits in a 
tree such that the cross-validated error was < 0.01. 
Because regression trees can be subject to overfit-
ting, we also used the R package “dismo” (Hijmans 
et al. 2021) to conduct boosted regression tree analy-
sis to determine the relative importance and effect of 
each of the three factors in describing landscape con-
nectivity (Elith et  al. 2008). In order to identify the 
combination of parameters for this analysis that mini-
mized residual deviance in model fit, we conducted a 
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grid search across all combinations of three values for 
three different regression tree parameters: tree com-
plexity (maximum number of node splits), learning 
rate (weight applied to individual trees), and bag frac-
tion (portion of the data used to construct each tree). 
The optimal number of trees for each combination 
of parameter values was determined using the “gbm.
step” function in the “dismo” package.

Results

Forest landscape dynamics

Each of our LANDIS response variables varied 
according to carbon emissions scenario by year 100 
(Figs.  4 and 5). In general, total biomass increased 

with carbon emissions, while forest diversity 
declined. The three forest diversity metrics (spe-
cies richness, age richness, and total cohorts) all fol-
lowed similar trends in response to carbon emissions 
(Fig.  4b–d). All three variables were greatest under 
historical carbon emissions and generally declined 
as carbon emissions increased. Species richness per 
forested cell (mean ± SD) increased from 4.12 ± 0.16 
to 5.08 ± 0.17 under the historical scenario, but 
remained steady under the other two emissions sce-
narios. Total cohorts and age richness showed dra-
matic declines under climate change, while remaining 
relatively constant under the historical scenario.

Despite declines in overall forest diversity, the 
proportion of the forested landscape considered 
non-avoided by martens (i.e., selected for or neutral) 
increased with carbon emissions (Fig.  5, Table  2). 

Fig. 4   Forest response to alternate carbon emissions scenarios 
based on LANDIS-II simulations from the year 2006 through 
2106 in the Upper Midwest, USA. Two representative concen-
tration pathways (RCP) for carbon emissions are presented, 
along with a historical emissions scenario based on the years 
1950 to 1999. Panel b indicates the mean number of species 

present per forested cell, panel c indicates the total number of 
species-age cohorts on the landscape, and panel d indicates 
the number of 10-year age classes present per cell across all 
species. Error bars represent one standard deviation among 10 
replicates for each scenario
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Under historical emissions, the mean propor-
tion of non-avoided cover types increased slightly 
from 0.56 ± 0.039 at year 0 to 0.58 ± 0.019 at year 
100 (F1,18 = 2.13, p = 0.162), while under RCP 
8.5 this proportion increased from 0.57 ± 0.034 to 
0.64 ± 0.018 (F1,18 = 30.76, p < 0.001). While the 
proportion of non-avoided cover types at year 100 
increased with carbon emissions, no significant dif-
ference could be detected among the three carbon 
emissions scenarios with 10 simulation replicates 
(F2,27 = 2.52, p = 0.099).

SEARCH results—animal dispersal

The top competing models describing variation in 
the three dispersal metrics (disperser success, dis-
persal distance, and time to settlement) included all 
three experimental factors (carbon emissions, land-
use change, source population; Table  4). Overall, 
increased carbon emissions had a positive effect on 
dispersal, resulting in greater disperser success and 

Fig. 5   Mean proportion of forested landscape composed of 
cover types that are not avoided by American martens when 
selecting home-ranges. Results represent output from LAN-
DIS-II modeling of forest succession in the Upper Midwest, 
USA under two climate scenarios based on two alternate rep-
resentative concentration pathways (RCP) for carbon emissions 
and one historical scenario (1950 – 1999). Error bars represent 
one standard deviation among 10 replicates for each scenario

Table 4   Model-based 
inference of three response 
variables characterizing 
simulated dispersal 
behavior through a habitat 
corridor in the Upper 
Midwest, USA

Experimental factors 
included direction (i.e., 
source population—east 
or west), climate scenario 
(historical, RCP 4.5 RCP 
8.5), and land-use change 
(included or excluded). 
The top competing models 
(in bold) describing each 
response variable were 
identified using Akaike’s 
Information Criterion 
(AIC) and associated model 
weights (ω)

Response variable Model k AIC ΔAIC ωτ R2

Disperser success Direction*Land-use + Climate 6 2304.2 0 0.785665 0.175
Direction + Climate + Land-use 5 2306.8 2.6 0.214119 0.17
Direction + Land-use 3 2320.6 16.4  < 0.001 0.148
Direction + Climate 4 2351 46.8  < 0.001 0.106
Direction 2 2363.5 59.3  < 0.001 0.084
Climate + Land-use 4 2363.8 59.6  < 0.001 0.086
Land-use 2 2376 71.8  < 0.001 0.064
Climate 3 2403.8 99.6  < 0.001 0.022

Dispersal distance Direction + Climate 4 11,501 0 0.36004 0.032
Direction + Climate + Land-use 5 11,501 0 0.36004 0.032
Direction*Climate + Land-use 7 11,502 1 0.218375 0.034
Direction 2 11,506 5 0.029554 0.02
Direction + Land-use 3 11,506 5 0.029554 0.021
Climate 3 11,512 11 0.001471 0.011
Climate + Land-use 4 11,513 12  < 0.001 0.012
Land-use 2 11,518 17  < 0.001  < 0.001

Time to settlement Direction + Climate + Land-use 5 9468 0 0.721106 0.411
Direction*Climate + Land-use 7 9469.9 1.9 0.278881 0.41
Direction + Land-use 3 9490 22  < 0.001 0.387
Direction + Climate 4 9527.1 59.1  < 0.001 0.349
Direction 2 9546.6 78.6  < 0.001 0.325
Climate + Land-use 4 9731.8 263.8  < 0.001 0.084
Land-use 2 9744.6 276.6  < 0.001 0.061
Climate 3 9769.8 301.8  < 0.001 0.023
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shorter dispersal times (Fig. 6). Land use change had 
the opposite effect, resulting in lower disperser suc-
cess and longer time to settlement. Source population 
had the strongest effect on dispersal events, with indi-
viduals from the more fragmented east having lower 
success and longer dispersal times than individuals 
originating in the west. Dispersal distance appears 
unaffected by the 3 experimental factors, as the abil-
ity of the best-performing regression model describ-
ing dispersal distance was poor (R2 = 0.032).The leg-
end for figure 4 got split with part of its content being 
included in a row at the bottom of the table rather 
than being incorporated as part of the legend. The 
text that ended up incorporated in the last row of the 

table rather than in the the table caption clarifies that 
bold text indicated most competitive models accord-
ing to AIC

Including an interaction between source population 
and land-use change for the disperser success model 
significantly improved model performance (F1 = 4.58, 
p = 0.032; Fig. 6). Land use change resulted in lower 
disperser success for both populations, but the effect 
was stronger on individuals from the more contigu-
ous west than the more fragmented east. Including 
interaction effects did not improve performance for 
models describing dispersal distance or time to settle-
ment, though these are considered competing models 
(ΔAIC < 2).

Fig. 6   Interaction between American marten dispersal behav-
ior and 3 experimental factors: carbon emissions scenario, land 
use change, and direction (i.e., source population). Results 
are based on individual-based modeling of dispersal behavior 

through a habitat corridor situated between two reintroduced 
marten populations in the Upper Midwest, USA. Means and 
standard errors are displayed across replicates each representa-
tive of 10 simulated dispersal events
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SEARCH results—functional landscape connectivity

Based on boosted regression tree analyses, func-
tional connectivity was lower from west (more 
contiguous) to east (more fragmented) and also 
declined with land-use change (Fig.  7, S2). The 
effect of emissions scenario was not consistent 
across data subsets. Connectivity was generally 
higher in the highest emissions scenario (RCP 8.5) 
and especially for the longer-distance dispersal, 
but the middle emissions scenario (RCP 4.5) pro-
duced lower connectivity than historical in the 0th 
and 75th percentiles of functional connectivity. 
Across all variables, the magnitude of the effect of 
the variable on connectivity increased as the sub-
set of long-distance dispersers was more limited 
(e.g., strongest effect for 95th percentile; Figure 
S2).

When including data from all dispersing mar-
tens (0th percentile), the standard regression trees 
identified no significant effects on functional con-
nectivity from the three experimental factors. For 
long-distance dispersers represented by percentile 
subsets of data (75th, 90th, and 95th), the regres-
sion trees identified source population (east vs 
west) of individual martens as the most important 
factor affecting functional connectivity, followed 
by emissions scenario and then land-use change 
(Fig.  7). Boosted regression trees confirmed the 
relative importance of experimental factors, except 
for the 75th percentile in which emissions were 
most important followed by land use and source 
population (Fig. 8).

Across subsets of dispersers, differences occurred 
between animals originating from different source 
populations. For martens released in the east, both 
emissions scenario and land-use change had signifi-
cant effects on connectivity across all subsets. For 
animals released in the west, land-use only affected 
the 95th percentile and emissions affected only the 
90th and 95th percentiles. Interaction also occurred 
between source population and climate scenario. 
Connectivity consistently increased with carbon 
emissions for animals originating from the west, 
whereas for animals from the east the historical car-
bon emissions scenario often resulted in higher con-
nectivity than other emissions scenarios (Fig. 7).

Discussion

Measuring functional connectivity

Our approach to measuring functional connectiv-
ity, in which functional connectivity is derived from 
an individual-based model and emerges as many 
fine-scale movements scale up to population-level 
patterns (Suraci et  al. 2020), is a powerful and flex-
ible means of evaluating the connectivity of alterna-
tive landscape futures (Day et al. 2020; Hunter-Ayad 
and Hassall 2020). Mechanistic methods to measure 
functional connectivity are needed as landscapes are 
increasingly impacted by anthropogenic activity (Van 
Moorter et al. 2021). Identifying barriers to connec-
tivity due to landscape configuration can be done 
using techniques of landscape genetics (Landguth 
et  al. 2010; Storfer et  al. 2010), though landscape 
genetics requires the collection of genetic samples 
and limits the ability to evaluate future landscape sce-
narios. Other landscape-level analytical approaches 
such as least cost path or circuit theory analyses 
require prior assumptions about resistance to move-
ment and an individual’s awareness of the whole 
landscape, and do not typically address directional 
asymmetry in dispersal due to landscape configura-
tion (Zeller et  al. 2012; Rinnan 2018). Because of 
its mechanistic nature, our approach can be used to 
project functional connectivity under novel and future 
conditions such as landscapes affected by climate 
change and is well-suited for application to other pop-
ulations (Radchuk et al. 2019). As we discuss below, 
our results demonstrate that this ability is important 
because directional asymmetry in functional connec-
tivity may have substantial conservation implications 
for the future of rare or isolated populations.

Simulation modeling can be a valuable tool in 
planning for the conservation of American martens 
and other motile species of conservation concern 
(Lacy and Clark 1993; Starfield 1997). We have 
demonstrated how combining dynamic models of 
landscape change with individual-based models of 
animal behavior can be used to explore how pat-
tern and process can affect wildlife populations in 
a rapidly changing world (Knowlton and Graham 
2010; da Rocha et al. 2021). Results from our study 
indicate that future climate and land-use change 
interact to impact marten habitat and their use of 
that habitat, and that the interactions can readily be 
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estimated with process-based models. Such interac-
tions can be particularly difficult to identify empiri-
cally, given that studies across large landscapes are 

usually limited to a single replicate with no oppor-
tunity to experimentally manipulate factors of 
interest. When an ecological model has previously 

Fig. 7   Regression trees 
(left column) and rela-
tive influence plots (right 
column) indicating factors 
affecting the functional 
connectivity (net directional 
displacement of dispers-
ers presented as a fraction) 
between two reintroduced 
populations of American 
martens in the Upper Mid-
west, USA. Factors varied 
included origin of release 
(east or west population), 
carbon emissions scenario 
(Historical, RCP 4.5, or 
RCP 8.5), and land-use 
change (static indicates no 
land-use change, dynamic 
incorporated land-use 
change through the year 
2100). Percentiles associ-
ated with each tree indicate 
the threshold above which 
data were included in the 
analysis. Values in the 
terminal leaf-nodes indicate 
the mean net displacement 
between populations for 
the corresponding subset 
of simulations as well as 
the percentage of the total 
data used to calculate those 
means. The relative number 
of data points included in 
each terminal node is repre-
sented by color shading, so 
that darker color represents 
a greater proportion of the 
data. Relative influence 
plots were produced using 
boosted regression trees 
optimized for number of 
trees, learning rate, tree 
complexity, and bag frac-
tion
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been calibrated to match observed empirical pat-
terns as is the present case, emergent results from 
subsequent simulation experiments are more robust 
to alternative and future scenarios that are a chal-
lenge to study empirically (Radchuk et al. 2019).

Climate change

Climate change in our simulations had a significant 
impact on habitat, dispersal behavior, and functional 
landscape connectivity, on a time scale of only 100 
years. As a result of the increase in non-avoided cover 
types with increasing carbon emissions, martens 
exhibited a 12% increase in disperser success (i.e., 

Fig. 8   Relative influence plots indicating factors affecting 
the functional connectivity (net directional displacement of 
dispersers presented as a fraction) between two reintroduced 
populations of American martens in the Upper Midwest, USA. 
Factors varied included origin of release (east or west popula-
tion), carbon emissions scenario (Historical, RCP 4.5, or RCP 

8.5), and land-use change (static indicates no land-use change, 
dynamic incorporated land-use change through the year 2100). 
Relative influence plots were produced using boosted regres-
sion trees optimized for number of trees, learning rate, tree 
complexity, and bag fraction
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rates of home-range establishment) and 23% shorter 
search times following the two-week exploration 
phase, with little effect on straight line dispersal dis-
tance. Results for effects of climate change on func-
tional connectivity were less clear, as there was not 
always a clear trend with increasing carbon emissions 
(see Figure S2). For example, functional connectiv-
ity was generally higher under climate change for 
individuals originating from the west, but this trend 
was not as clear for individuals from the more frag-
mented eastern portion of the landscape. Increased 
functional connectivity with carbon emissions was 
also more apparent for the 90th and 95th percentile 
dispersers, but only under the maximum carbon emis-
sions scenario. Taken together, these results suggest 
that changes in habitat due to high carbon emissions 
could be beneficial for marten population connectiv-
ity. Other LANDIS simulations in the region have 
reported similar increases in total biomass as well as 
the biomass of tree species commonly selected for by 
martens (Scheller and Mladenoff 2005; Thompson 
et al. 2011).

While forest habitat conditions may become more 
suitable for martens under climate change based on 
our present model of habitat suitability (Dumyahn 
et al. 2007), we note that the habitat selection model 
we used was developed in the context of present 
habitat rather than future climate change. This has 
made the model ideal for present applications (Zoll-
ner et  al. 2008; Day et  al. 2020) yet unable to fore-
see potential habitat needs in the context of climate 
change. For example, while forest biomass increased 
in the climate change simulations, species richness 
and age richness each declined as carbon emissions 
increased, potentially signaling a loss of forest resist-
ance and resilience (Duveneck and Scheller 2016). It 
is unknown how martens might respond to declines in 
tree species diversity, but they do require forests with 
complex structure and a mix of coniferous and decid-
uous species (Gilbert et al. 1997, 2017). Further, the 
homogenization of forests in the Great Lakes region 
has been ongoing for more than a century and is 
likely accompanied by a decline in overall biodiver-
sity (Schulte et al. 2007). Such a decline would limit 
the diversity of prey available to martens, promot-
ing competition with fishers (Manlick et  al. 2017b). 
In addition to biodiversity factors, future snow cover 
has the potential to affect the survival and landscape 
connectivity of marten populations. Deep snow cover 

in winter both facilitates marten movement (Moriarty 
et al. 2015) and impedes fisher movement, potentially 
mitigating competitive interactions (Manlick et  al. 
2017b; Suffice et  al. 2017). Each of the above fac-
tors, while omitted from the present habitat model, 
has the potential to override gains in structural habitat 
and shift the overall effect of climate change on mar-
ten conservation. These factors therefore represent 
important avenues for future work on the response of 
martens and other forest carnivores to habitat trans-
formation due to climate change.

Land‑use change

Land-use change is another driver projected to result 
in the significant fragmentation and loss of forested 
habitat (Sohl et  al. 2014) in ways that are likely to 
impact functional connectivity of landscapes occu-
pied by martens (Hargis et  al. 1999). Incorporating 
land-use change in dispersal simulations resulted in a 
14% decrease in disperser success and a 42% increase 
in search times, despite having little effect on straight 
line dispersal distance. In other words, martens expe-
rience higher risk and more effort to ultimately dis-
perse the same distance. Land-use change also caused 
a decrease in functional connectivity, though it was 
the least impactful of the three factors. This decrease 
was likely affected by the increase in disperser mor-
tality in the land-use change scenarios (Johnson et al. 
2009; Day et al. 2020). Again, these results interacted 
with source population, because land-use change had 
a stronger effect on individuals originating from the 
east. Overall, these results concur with general pre-
dictions of the effects of land-use change on con-
nectivity and dispersal, particularly for carnivores 
(Crooks et al. 2011; Howell et al. 2016). Such predic-
tions, however, can be strengthened if they explicitly 
consider the effect of disperser mortality (Day et  al. 
2020) and directional asymmetry (Rinnan 2018) on 
the flow of dispersal across the landscape.

Landscape configuration

The asymmetrical configuration of the study land-
scape played a major role in the simulations, as most 
results associated with dispersal behavior and func-
tional connectivity exhibited interactions with the 
source population of the dispersers. This was likely a 
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result of the imbalance of fragmentation and available 
suitable habitat between the two ends of the habitat 
corridor (Day et  al. 2020). Functional connectivity 
from east to west was affected by both carbon emis-
sions scenario and land-use across all subsets of dis-
persers. These individuals from the east, however, 
were more successful traversing the landscape as 
available suitable habitat on the landscape increased. 
In other words, fragmentation and a lack of habitat in 
the eastern portion of the landscape may have acted 
as a directional barrier for individuals dispersing 
from the west, while funneling martens from the east 
to venture further into the corridor between popula-
tions. Mortality acted to offset these effects of land-
scape configuration (Day et  al. 2020), as disperser 
success was lower for animals from the east despite 
greater connectivity values. These asymmetric effects 
of landscape configuration are likely widespread 
among similar species that disperse long distances, 
especially as landscapes become more fragmented 
(Ferreras 2001; Rinnan 2018; Schippers et al. 1996).

Conservation implications

For the American marten, these results have signifi-
cant conservation implications, and for the Ojibwe 
people on whose ceded territories this work was con-
ducted, significant cultural implications. Previous 
work has shown that the viability of isolated marten 
populations increases dramatically with just a sin-
gle immigration event per year (Mills and Allendorf 
1996; Grauer et al. 2017; Manlick et al. 2017a). For 
the region being considered in the present study, it 
is critical that individuals from the more established 
population in Michigan are able to disperse west into 
the smaller, endangered population in Wisconsin. 
While martens in the region have been observed mov-
ing from the western to the eastern population (JHG 
personal observation), similar movements have yet to 
be observed from east to west. Thus, it is important 
to understand how landscape configuration interacts 
with changing environments to drive asymmetry in 
dispersal, thereby mediating gene flow and potential 
demographic rescue. The Ojibwe tribes in the region 
are using results from studies such as this to develop 
landscape-scale habitat projects that are designed to 
enhance corridors and connectivity among subpopu-
lations. These efforts are consistent with the Ojibwe 
view that plans should be made thinking about the 

Seventh Generation into the future (Marvin Defoe, 
Red Cliff Tribal Historic Preservation Offices).

The role of simulation modeling

An underappreciated utility of simulation modeling is 
in how it helps to identify gaps in knowledge that may 
be needed for conservation planning (Starfield 1997). 
For example, the effects of carbon emissions on forest 
structure in our model revealed the need to investigate 
how martens respond to measures of forest diversity 
such as age richness and species richness in order to 
better understand how they might respond to climate 
change. More work is also needed to understand how 
changing snow cover will affect the movement capa-
bilities and conservation of martens in a warming cli-
mate (Pauli et al. 2013b). Our application would also 
benefit from an improved habitat selection model that 
accounts for home-range selection at multiple scales, 
as the present model did not identify lowland conifer 
stands that are important at the within-home-range 
scale (McCann et  al. 2014). These are all research 
needs made apparent by the process of model testing 
and development, as well as by combining models of 
landscape processes and animal behavior to evaluate 
alternative future landscape scenarios.

Since Lima and Zollner’s (1996) seminal paper 
on behavioral landscape ecology, much progress has 
been made integrating animal behavior and landscape 
features to address ecological questions. Yet research-
ers continue to call for the collection of empirical 
behavioral data as model development outpaces the 
availability of data needed for model parameteriza-
tion (Knowlton and Graham 2010; Urban et al. 2016). 
Our dispersal simulation model was developed and 
parameterized based on a long history of ecological 
investigation into martens in this ecosystem (e.g., Day 
et  al. 2019, 2020, 2022; Gilbert et  al. 1997, 2009; 
McCann et al. 2010, 2014; Manlick et al. 2017a), and 
represents an example of how long-term empirical 
study of one species can be used to develop a com-
plex model of behavioral landscape ecology. In a pre-
vious application, Day et al. (2019) used SEARCH to 
reproduce marten dispersal distance distributions that 
emerged from fine-scale processes (Breckling et  al. 
2005), including occasional long-distance dispersal. 
The behavioral plasticity apparent in these long-dis-
tance dispersal events was not imposed, but emerged 
from basic behavioral rules followed by all dispersers. 
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With such a mechanistic approach, natural behavio-
ral responses can emerge even when modeling novel 
or future landscapes (Radchuk et al. 2019), especially 
when combined with a dynamic landscape simulation 
model such as LANDIS. Such modeling approaches 
are needed to help conservation biologists to better 
understand how species will functionally respond to 
rapidly changing landscapes in an uncertain future. 
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